Evolving principal component clustering with a low run-time complexity for LRF data mapping

نویسندگان

  • Gregor Klancar
  • Igor Skrjanc
چکیده

In this paper a new approach called evolving principal component clustering is applied to a data stream. Regions of the data described by linear models are identified. The method recursively estimates the data variance and the linear model parameters for each cluster of data. It enables good performance, robust operation, low computational complexity and simple implementation on embedded computers. The proposed approach is demonstrated on real and simulated examples from laser-range-finder data measurements. The performance, complexity and robustness are validated through a comparison with the popular split-and-merge algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Critique on Power Spectrum – Area Fractal Method for Geochemical Anomaly Mapping

Power spectrum – area fractal (S-A fractal) method has been frequently applied for geochemical anomaly mapping. Some researchers have performed this method for separation of geochemical anomaly, background and noise and have delineated their distribution maps. In this research, surface geochemical data of Zafarghand Cu-Mo mineralization area have been utilized and some defects of S-A fractal me...

متن کامل

Choosing the Best Hierarchical Clustering Technique Based on Principal Components Analysis for Suspended Sediment Load Estimation

1- INTRODUCTION The assessment of watershed sediment load is necessary for controling soil erosion and reducing the potential of sediment production. Different estimates of sediment amounts along with the lack of long-term measurements limits the accessibility to reliable data series of erosion rate and sediment yield. Therefore, the observed data of suspended sediment load could be used to ...

متن کامل

Application of modified balanced iterative reducing and clustering using hierarchies algorithm in parceling of brain performance using fMRI data

Introduction: Clustering of human brain is a very useful tool for diagnosis, treatment, and tracking of brain tumors. There are several methods in this category in order to do this. In this study, modified balanced iterative reducing and clustering using hierarchies (m-BIRCH) was introduced for brain activation clustering. This algorithm has an appropriate speed and good scalability in dealing ...

متن کامل

Study of Dust Storm Synoptical Patterns in Southwest of Iran

As widespread deserts is located in west and southwest of Iran plateau, dust storms form due to west andsouthwest systems over Syria or Iraq as well as Arabian Peninsula. These systems severely affect west and southwestregions. Sometimes the fine dusts transmit to central, north east, and east regions. In this study for investigating dustysynoptical patterns, meteorological data at 5 synoptic s...

متن کامل

Using Clustering and Factor Analysis in Cross Section Analysis Based on Economic-Environment Factors

Homogeneity of groups in studies those use cross section and multi-level data is important. Most studies in economics especially panel data analysis need some kinds of homogeneity to ensure validity of results. This paper represents the methods known as clustering and homogenization of groups in cross section studies based on enviro-economics components. For this, a sample of 92 countries which...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Appl. Soft Comput.

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2015